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Abstract

The stochastic-gauge representation is a method of mapping the equation of motion for the quantum mechanical den-
sity operator onto a set of equivalent stochastic differential equations. One of the stochastic variables is termed the
“weight”, and its magnitude is related to the importance of the stochastic trajectory. We investigate the use of Monte Carlo
algorithms to improve the sampling of the weighted trajectories and thus reduce sampling error in a simulation of quantum
dynamics. The method can be applied to calculations in real time, as well as imaginary time for which Monte Carlo algo-
rithms are more-commonly used. The Monte-Carlo algorithms are applicable when the weight is guaranteed to be real, and
we demonstrate how to ensure this is the case. Examples are given for the anharmonic oscillator, where large improvements
over stochastic sampling are observed.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The problem of calculating quantum dynamics is of fundamental interest in theoretical physics [1]. It is a
notoriously difficult problem due to the fact that the dimension of the appropriate Hilbert space scales expo-
nentially with the number of modes in the system. This is enormous for most realistic physical systems and
prevents the complete representation of the evolving many-body quantum state as a numerical state-vector.
Successful quantum simulation methods can thus only hope to sample the quantum evolution, to some finite
precision, by use of stochastic methods.

Such quantum Monte Carlo (QMC) techniques have a long history in first-principles, microscopic calcula-
tions of thermal equilibrium and ground states in quantum systems [2,3]. Certain classes of QMC methods,
such as diffusion or Green’s function approaches [4] (projector methods) are restricted to calculation of
ground state properties. Methods based on path integrals [5] are a simulation through imaginary time, and
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can calculate correlations at any temperature. However, for real-time calculations (i.e. dynamics), path inte-
gral QMC methods become difficult because of sign or phase problems [6,7].

An alternative approach is provided by phase-space representations [§—10], which can be used to map quan-
tum dynamics to a set of equivalent stochastic differential equations. The number of phase—space equations
scale polynomially with the number of modes, allowing computationally tractable simulations. Phase-space
methods have proved useful in the past for simulating quantum dynamics, particularly in the field of quantum
optics [11-13]. A natural extension of these techniques is to the field of degenerate quantum gases, where the
interacting particles are atoms or molecules rather than photons [14,15]. Recently it has been discovered that
Fermi gases can be treated with related techniques [16,17].

The mapping of a quantum problem to phase-space equations is far from unique. This non-uniqueness can
be exploited to tailor the form the stochastic equation without affecting the physical, ensemble result. The dif-
ferent choices correspond to different “stochastic gauges”. In this paper, we use this freedom to generate sto-
chastic equations with real weights, which we then sample with Monte Carlo techniques. The real weights
avoid the sign or phase problem encountered in other QMC approaches to quantum dynamics. Since the sto-
chastic gauge method is a relatively new technique, we choose to focus here on an especially simple case with
known exact solutions, in order to clarify the problems and advantages of this real-weight approach.

The example we choose is the single-mode quantum anharmonic oscillator. Even though this system has an
exact solution, it displays highly nontrivial behaviour when treated as a stochastic problem. In particular, this
problem is of interest as it is relevant to current experiments on the dynamics of ultra-cold atoms trapped in
optical lattices. These are described rather accurately by the so-called Bose-Hubbard model, which reduces to
the type of single-mode theory treated here in the Mott-insulator limit in which inter-well tunneling is sup-
pressed. We simulate the decay of coherence due to phase-diffusion, a physical effect that has already been
experimentally observed in recent experiments with Bose—FEinstein condensates [18]. The present paper focuses
on this relatively straightforward case in order to demonstrate the important principles behind first-principles
quantum dynamical simulation in real time. Due to the linear scaling of these methods with increasing num-
bers of modes, we expect that the same basic ideas will apply to multi-mode or multi-well situations where
there are no known exact solutions in general.

This paper is organised as follows. In Section 2, we review the stochastic-gauge representation [19] and
motivate the use of Monte Carlo techniques for sampling the weighted stochastic trajectories. In Section 3,
we introduce the anharmonic oscillator as a simple model for interacting quantum dynamics, and describe
the design of a gauge that results in real weights. We then simulate using this gauge with regular stochastic
sampling and find that the sampling becomes poor over short time scales. In Section 4, we review the Metrop-
olis—Hastings algorithm [20-22] and describe its application to stochastic-gauge simulations. We then demon-
strate improvements over the usual stochastic sampling for the same type of gauge. In Section 5, we describe
an alternative scheme, based on stochastic sampling, but with a branching algorithm for efficient handling of
the weights. Finally, in Section 6 we discuss the advantages and disadvantages of each Monte Carlo method in
the context of future applications.

2. The Stochastic-gauge representation

The stochastic-gauge (or gauge-P) representation is a generalisation of the positive-P (+P) representation
[9,10], where the density operator is expanded as a positive distribution over an off-diagonal, over-complete
basis set of coherent states. In a +P representation of an M mode bosonic quantum system, there are two com-
plex phase-space variables (o, ;) for each mode, k =1... M. Throughout this paper the +P variables
& = (a, B) are referred to as mode variables. The essential difference between the +P and the stochastic-gauge
representation is that the later is defined over a quantum phase space with an additional dimension termed the
weight Q, such that the total phase space is of complex dimension 2M + 1. For a complete description of the
method we refer the reader to Ref. [19], however we briefly summarise the main features of the method below.

The procedure for calculating quantum dynamics using the stochastic-gauge representation is similar to
that using the +P representation and involves deriving, via a Fokker—Planck equation, a set of stochastic dif-
ferential equations equivalent to the original quantum master equation. The most general quantum-dynamical
evolution may be written as a master equation of the form [10]



M.R. Dowling et al. | Journal of Computational Physics 220 (2007) 549-567 551
op
—=L[p 1
2~ 1[p), ()
where L is a Liouville superoperator (e.g. L[p] = —ih[I:I , p] for unitary evolution). To calculate the quantum

dynamics using the stochastic-gauge representation we expand the density operator in an over-complete basis
set as

p= / d™Mad’QG(3, Q) A(d, Q), (2)
where

A(@, Q) = Ql|a) (B'|| exp[ - f]
is the kernel, G(d, Q) is the (non-unique) gauge distribution function, and

[l) = exple - a']|0) 3)

is a multi-mode Bargmann coherent state [10], where @' is a vector of creation operators for the M modes, and
|0) is the vacuum state.

By use of operator identities for creation and annihilation operators acting on the kernel and subsequent
integration by parts (with the assumption that boundary terms vanish), it is possible to show that any master
equation involving only two-body terms is equivalent to a gauge distribution function evolving according to a
positive-definite Fokker—Planck equation. The dynamical moments may therefore be obtained by evolving an
equivalent set of stochastic differential equations (SDEs) and taking stochastic averages of an appropriate
product of stochastic variables [23].

At this point it is possible to add arbitrary terms to the Fokker—Planck differential operator that give zero
when acting on the kernel. These terms cannot affect the quantum averages, but add stochastic gauges — arbi-
trary functions on phase space — to the drift part of the corresponding SDEs [19]. The central result is easy to
state. For an M mode quantum system with +P Ito equations of the form

=A% +BE )
where 4 = 44)(@) and B") = B™)(&) are the positive-P drift vector and diffusion matrix, respectively, then
the stochastic-gauge equations for the system are

i=A"+BY(E-g) (5)

Q=03"¢ (6)
Here g = g(d) is a vector of stochastic gauges and ¢ is a vector of Gaussian noises with the correlations

(&) (1)) = 0,0(t = 7). (7)

The stochastic gauges g can be used to modify the deterministic evolution of the stochastic trajectories and are
therefore called drift gauges.

Also possible are diffusion gauges which arise from the non-unique factorisation of drift matrix D appearing
in the Fokker—Planck equation into a noise matrix B for the SDEs, where

D = BB". (8)
Diffusion gauges can be used, for example, to “squeeze” the noise between stochastic variables to improve
sampling [24]. More general types of diffusion gauge are possible in the full stochastic-gauge formalism [19,25].

For a single mode, quantum-dynamical averages of normally ordered products of creation and annihilation
operators are calculated as stochastic averages in the following manner

<(&T)m&n>QM _ <Qﬁm02;++(g*ﬁ>ndm) >stoch .

©)

stoch

In principle any gauge that does not introduce boundary terms on partial integration will reproduce the exact
quantum averages in the limit that an infinite number of trajectories are simulated, and so all gauges represent
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the same physics. However, in practice we may only simulate a finite number of trajectories due to limited
computing resources, and so we would like to choose a gauge that gives rise to the most compact phase-space
distribution G possible. A narrower distribution means that fewer stochastic trajectories need to be sampled to
obtain quantum averages with a given precision. The situation is similar to classical or quantum electrody-
namics, where a judicious choice of gauge simplifies the solution of certain problems.

2.1. Monte Carlo techniques for the weight variable

The motivation for this work is that in the stochastic gauge representation, stochastic trajectories are often
generated with weights that vary over many orders of magnitude as illustrated in Fig. 1. From Eq. (9) we can
see that the trajectories with relatively high weight contribute more to the overall stochastic averages than
those with relatively low weight.

The situation is analogous to path-integral calculations of quantum averages in imaginary time (thermal
quantum averages), where quantum Monte Carlo techniques have long been used to sample the weight param-
eter more efficiently [26,4]. In the standard stochastic gauge prescription the stochastic trajectories are gener-
ated randomly. If the weight parameter can be interpreted as a probability, then this suggests that more
sophisticated Monte Carlo techniques can be used to efficiently sample high-weight trajectories, thus improv-
ing the sampling of physical averages.

In this paper we focus on real-time dynamics, although the same techniques apply to imaginary-time sto-
chastic gauge calculations [17]. Previously, Monte Carlo techniques have had only limited success with real-
time quantum dynamics, where path-integral approaches are plagued by sign problems due to the rapidly-
oscillating phase [3,27].

However, there is a complication — in the stochastic-gauge representation the weight is complex in gen-
eral. In principle it is possible to apply Monte Carlo techniques to problems with a complex weight — by
treating the modulus of the weight as the ‘importance’. In practice, however, sign problems are encountered
when the phase of the weight eventually becomes evenly distributed around the unit circle in the complex
plane. In order to strictly interpret the weight as a probability distribution, we must ensure that our choice
of gauge leads to a weight parameter that is real. This means that the gauge functions we introduce must
also be real.

HIGH WEIGHT

PR
A

LOW WEIGHT

0 0.02 0.04 0.06 0.08 0.1
T

Fig. 1. Tllustration of the spreading of weights in a stochastic gauge simulation for the anharmonic oscillator. These three trajectories of Q
were generated using randomly chosen noises for a real-gauge simulation of the anharmonic oscillator (4 =2,/ = 1/2), as described in
Section 3.1, with mean atom number 7 = 100. The total simulation time was 7, = 1/v/% = 0.1 and the time step used was At =
Tt/ 10° = 107 Note that the relative weights of the trajectories vary in time so the Metropolis algorithm can only be targeted to sample
the distribution at a single chosen time. The branching algorithm clones trajectories continuously in time in proportion to their weight so
as to obtain continuous-time samples of the distribution.
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3. Example: The Kerr anharmonic oscillator

In this section, we introduce a single-mode boson model for quantum nonlinear dynamics — the Kerr anhar-
monic oscillator. The Hamiltonian is

R o1 1 1 1
H:hwo(&'& 2>+2m'2Z—hwo<ﬁ+§>+§xﬁ(ﬁ—1), (10)

where 1 = ata is the number operator. Traditionally this Hamiltonian has been used to describe the Kerr effect
in nonlinear optics. It has received renewed interest recently, as it is the restriction to a single site of the Bose—
Hubbard model. This has been shown to describe ultra-cold bosonic atoms in an optical lattice [28], a topic of
recent theoretical and experimental interest [29,30].

Throughout this paper we work in the interaction picture with

1
[_ImIZEK&]L2 2 (11)

A number state is an eigenstate of this Hamiltonian and evolves according to
n(2)) = exp(—in(n — 1)7/2)[n(0)), (12)

where we have introduced the dimensionless time t = xt/h. Hence, any initial state can be decomposed into
number states and an exact solution found. In particular, for an initial coherent state |y#(0)) = |«), the solution
is

(1)) = e’ /22 exp —in(n —1)t/2)|n). (13)

As this model has an exact solution and includes the nonlinearity that is a feature of models such as the Bose—
Hubbard Hamiltonian, it forms an excellent testing ground for quantum simulation methods [31].

An important quantum feature of this Hamiltonian is that given an initial coherent state |«) with mean
boson number 7 = |oc|2, the dynamics display a series of collapses and revivals. Defining the quadrature
variables

=(a+ah/2, Y= (a—ah)/2i, (14)

we find there are three characteristic timescales for anharmonic oscillator dynamics. The quadratures initially
undergo oscillations with period 7o ~ O(1/7), which are damped to zero over a time of .o ~ O(1/y/7).
However, the oscillations revive at time 7., ~ O(1), which for a large mean boson number can be many times
the collapse time.

Because the period of oscillation of the quadratures can be very short for large mean atom number, and
because we are most interested in the envelope of the collapse, we choose to perform the calculations in a
rotating frame. The angular frequency of the rotation is equal to the mean atom number, and the X-quadra-
ture, whose exact solution is

(X (1)) = V"V cos(n(sin(r) — 7)), (15)
collapses dynamically for large mean atom number according to:

(X(2)) =~ Ve "2, (16)
For the anharmonic oscillator Hamiltonian the stochastic-gauge Stratonovich SDEs are

& = —ia?f + in/2 + V—iafcosh(4) (&, — g,) — isinh(4)(&s — g4)], (17)

B =i —iB/2 + Viplcosh(4)(&; — gy) +isinh(4)(&, - g,)], (18)

Q=5,+Q> g, (19)

Jj=up
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Here 4 is a diffusion gauge that we choose to be constant in this paper, g, j = o,f, are drift gauges to be chosen
subsequently, and ¢; are dimensionless Gaussian noise terms chosen so that:

<éi(’c)éj(’[,)> = 5[/'5('5 —7). (20)

The term S, is a Stratonovich correction factor which depends on the gauge choice.
For better numerical performance we choose to work with log variables:

0= (1/2)log(af), &= (1/2i)log(e/f), = log(Q). (21)
These obey the following Stratonovich SDEs:

.1 .

(92564(51 —g —i1(& — &), (22)

. 1 1

¢:—€29+§—§e/‘(51 — & +i(& — ), (23)

> =58,+ Y g5 (24)
j12

where we have defined the linearly transformed noises &, = (&, + éﬁ)/\/i and & = (&, — f/;)/\/i, which obey
the same statistics, and similarly g, = (g, + g;)/ V2 and g, = (g, — gs)/ V2. We note here that, unlike in the
corresponding classical oscillator equations, both 0 = 0y + 10y and ¢ = ¢y + iy are intrinsically complex.
The notation of X and Y superscripts to refer to the real and imaginary parts of a phase-space variable, respec-
tively, is used throughout this paper.

3.1. Choice of gauge

In this section, we discuss possible choices of diffusion gauge for the anharmonic oscillator with a view to
using Monte Carlo techniques to sample the weight.

In Ref. [32] Drummond and Deuar investigated the following drift-gauge choice for the anharmonic
oscillator

g, = ig, = ie" ™" sin(20y). (25)

They found that this gauge extended simulation times by many orders of magnitude for the same number of
stochastic trajectories. In particular, they could simulate well past the collapse time for an initial coherent state.

As noted in Section 2.1, for the Monte Carlo methods to be successful it is highly desirable to have a real
weight. Unfortunately the above choice of gauge is complex and thus leads to complex weights. We have tri-
alled the use of Monte Carlo techniques based on using the modulus of the weight, but found these to be
unsuccessful due to the phase problem described in Section 2.1.

In order to have real weights, we would like to design a real gauge with similar properties to the above com-
plex gauge to give a similar extension of simulation time. The reason that the complex gauge Eq. (25) improves
simulation times is that it removes a driving term from the imaginary part of the +P ¢ equation. The presence
of this term forces trajectories to diverge to infinity in a non-classical direction in phase-space (¢y — £00),
thus resulting in large sampling errors. At the same time the equations for 6 and the real part of ¢ are unaf-
fected due to a cancellation between g, and g,. We could remove the offending term from the ¢y equation with
a single real gauge g, however this would necessarily appear in the 6y equation leading to an instability that
causes poor sampling.

Thus it seems that a drawback to choosing real gauges is that there is substantially less control over the
stochastic trajectories. This could have been anticipated because, in general, with a complex gauge we have
as many gauge degrees of freedom as we do real phase space dimensions, 4M (excluding the weight dimen-
sions). However with real gauges we only have half as many gauge degrees of freedom, 2M, meaning that
we cannot independently control the drift in the real and imaginary components of each of the mode variables.

An additional source of gauge freedom is obtained from choosing a non-square noise matrix in deriving the
SDEs. This freedom was pointed out in [19] but not explored. Specifically, it is possible to take the noise
matrix to be of the general form
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B = [By, Q], (26)

where By is a square (2M x 2 M) noise matrix such that BOBOT =D — QQ", and Q is a 2M x W matrix, where W
is any positive integer, whose entries are arbitrary complex functions. This choice reproduces the correct mo-
ments in the limit of a large number of stochastic trajectories, but introduces more than the minimum number
of noise terms into the stochastic equations. Naively this could be expected to lead to worse sampling errors.
However, this additional gauge freedom allows us to overcome the restrictions of the standard real gauges and
improve the sampling overall.

For the anharmonic oscillator we choose

Q= B 3] (27)

in the (0, ¢) variables, where A could be an arbitrary complex function on phase space, although we choose it
to be constant in our example. Here Q satisfies QQ" = 0 so the other noise terms are unaffected. In doing so
we have added a term of the form A(&; + 1&4) to the equation of motion for ¢, Eq. (23). An equivalent way of
understanding this additional noise is that due to the analytic nature of the stochastic gauge kernel we have

N P

Thus we are free to add A(3°/d¢% + 0°/d¢?) to the Fokker-Planck differential operator without affecting the
physical moments. )

We are now able to introduce additional gauges to the ¢ equation in the manner described in [19] so that
the extra term in the ¢ equation becomes

(& — g3) +1(& — g4)), (29)

and the gauges g; and g4 enter the weight equation in the same way as the other drift gauges. The extra noise
allows us to control the ¢y divergence using only a real gauge, without affecting the 0y equation. Specifically,
we choose
e20x
8§1=8=8=0, g=- 1 sin(20y). (30)

The final SDEs that we focus on sampling for the rest of this paper are summarised as
1

9256%(51 —i&), (31)
. I 1 . .y
¢ = —e*™ cos(20y) + 373 (e'(&) +1&) — 2A(& +1&y)), (32)
20y
@ =5, ——— sin(201)&, (33)
where S,, = —e*r sin’*(20y) /24 is the Stratonovich correction in the weight equation. Note that although we

choose g3 = 0, it is still necessary to include the noise &; for the mapping to be exact. Of course there are other
possible choices of real gauges, but we have found this combination to be well-suited to illustrating the
improvements possible with Monte Carlo sampling.

3.2. Results

In Fig. 2, we illustrate stochastic sampling of the above SDEs. We begin with an initial coherent state with
mean atom number 7 = 100, and simulate to a final time of T = 1/y/n = 0.1, which is of the order of the col-
lapse time. The error bars plotted are calculated by assuming approximately Gaussian statistics — i.e.

Ay =y YT (34)

n—1 "~
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Fig. 2. Real-gauge simulation of anharmonic oscillator dynamics for an initial coherent state with mean atom number 7z = 100
(A4=2,A=1/2). (a) Mean weight, (b) mean atom number (corresponding stochastic variable n = ) and (c) mean X-quadrature
(corresponding stochastic variable X = (« + f8)/2). Averages were carried out over 10° stochastic trajectories. The total simulation time was
Tt = 1/+/i = 0.1 and the time step used was At = Tiot/ 10> = 107, The shaded region indicates the estimated error in the simulation and
the stochastic means are in the centre of the region. The analytic results are shown as dashed lines. The sampling is poor except for short
times due to the skewed weight distribution.

where f'is the function of the stochastic phase-space variables to be averaged, A{f) is the error in the mean, and
n is the number of trajectories. Clearly the sampling of the solution is only accurate for short times, perhaps
7 <0.01. In particular, the sampled {Q)soc, decays towards zero when it should remain at one for all times in a
simulation of unitary dynamics. The decay in mean atom number, which should remain at 100, is almost iden-
tical to the decay in mean weight, suggesting that poor sampling of the weights is the cause of the discrepancy.
Furthermore, the estimated errors in the means are small despite the fact that they are clearly far from the
analytic results, which indicates that either (34) is not a good estimate of the error in the sampled means or
that there is some systematic error such as a boundary term.

In principle this undesirable behaviour could be due to neglected boundary terms that are assumed to van-
ish in the general formulation, as noted in Section 2. Unfortunately there is no analytic method for determin-
ing whether or not boundary terms vanish. Numerical signatures of non-vanishing boundary terms, such as
stochastic trajectories that diverge to infinity in a finite amount of time, are discussed in [33]. Such trajectories
are not observed in our simulations.

One can understand the poor sampling by considering the nature of the distribution of weights. We find
that the weight parameter evolves with time towards zero for most trajectories. However, the mean weight
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Fig. 3. Histogram of the distribution of the stochastic variable w = InQ at (a) an intermediate time, T = 0.025, and (b) the end (t = 0.1) of
the simulation plotted in Fig. 2. The last bins of (a) at @ = —25 and (b) at @ = —200 include all trajectories with lower weights; the
minimum was o ~ —100 in (a) and w ~ —1700 in (b). The weights continuously spread out over many orders of magnitude as time
progresses. It is the “skewness” of the weight distribution that causes difficulty in stochastic sampling and which we aim to account for by
using Monte Carlo techniques.

must be one, and so there must exist a small number of trajectories with large weights. Thus the distribution of
weights is skewed towards zero with a long tail extending to large weights. The skewed distribution of weights
is illustrated in Fig. 3 where we plot a histogram of the logarithms of the weights at an intermediate time
(t =0.025) and at the end (r = 0.1) of the stochastic trajectories of the simulation plotted in Fig. 2. Such dis-
tributions are difficult to sample, so it is not surprising that we underestimate the errors in the means as these
assume Gaussian statistics. For example only approximately 1 in 10 of the trajectories had Q > e~ '° by the end
of the simulation. In other words 9 in 10 trajectories make negligible contribution to the averages and yet are
still included in the total number of trajectories in (34). This explains why (34) typically vastly underestimates
the error for these simulations.

To further quantify the skewness of the distributions in Fig. 2 we calculated a number of standard mea-
sures. Note that it is actually the distribution of Q = exp(w) that we are interested in, however we have plot-
ted a histogram of w because Q2 is so peaked that little can be seen from a histogram. The skewness of a
distribution is its third central moment divided by the cube of its standard deviation (=0 for a normal dis-
tribution). The skewness was 200 at the intermediate time and 240 at the end. The kutosis, defined as the
fourth central moment divided by the fourth power of the standard deviation (=3 for a normal distribu-
tion), is a measure of how peaked a distribution. The kurtosis was 5.5 x 10* and 7.4 x 10* at the interme-
diate and end times, respectively. The sampled mean is 0.86 at the intermediate time compared with the
median of 0.09, while at the end time the mean is 0.09 compared with median of 5 x 10~'°. Finally, the trun-
cated mean (where the largest and smallest 1% of the samples are discarded) is 0.49 at the intermediate time
and 0.001 at the end. These last two measures, the difference between the sampled mean and median and the
sensitiveness to discarding the most outlying samples, are perhaps more relevant to how difficult it is to
sample the distribution accurately.

Fortunately, Monte Carlo techniques are particularly successful in sampling skewed distributions. Below
we describe the application of the Metropolis—Hastings algorithm and a Monte Carlo branching algorithm
to our SDEs for the anharmonic oscillator. As discussed in Section 6 the improvements in sampling that
we see provide further evidence that the skewed weight distribution, rather than a boundary term, is the cause
of the sampling problems in the simulation of Fig. 2.

4. The Metropolis—Hastings algorithm
The Metropolis—Hastings algorithm is a well-known technique for generating samples of a multi-dimen-

sional probability distribution. Here we briefly describe the algorithm and discuss how to estimate errors in
quantities derived from such samples.
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4.1. Algorithm

The Metropolis algorithm was first described in 1953 [20] and was used to sample a thermal Boltzmann
distribution, which can be viewed as a probability distribution over the space of all thermally accessible states
of a system. Subsequently, the Metropolis algorithm has been generalised to many types of probability distri-
butions/densities over both discrete and continuous spaces, and there is a vast amount of mathematical liter-
ature on Markov Chain Monte Carlo (MCMC) techniques (see e.g. [6,7]).

In this section, we summarise the Metropolis algorithm in a more general form due to Hastings [21]. A well-
written introduction to the Metropolis—Hastings algorithm may be found in [22], and here we follow their
notation. Formally, the Metropolis algorithm is a MCMC technique for efficiently sampling a probability dis-
tribution, n(s), where s € S represents the state of some system, and S is the domain of the distribution known
as the state space. To be a true probability distribution 7(-) must be normalised [ dsn(s) = 1, however one of
the virtues of the algorithm is that the functional form of the distribution need only be known up to a constant
factor in order to apply the algorithm.'

A Markov chain can be thought of as a random walk through state space where the probability of making a

particular step depends only on the current location. It is a sequence of points, 51,55, .. .,s, € S, where the s; are
random variables such that
D(silsty 82,y si1) = plsilsiz1)- (35)

The conditional density p(sis;_1) is known as the transition density of the Markov chain. If there exists an
invariant density

'(s) = /ds/7r*(s/)p(s|s')7 (36)
that satisfies the condition of detailed balance
p(s's)n" (s) = p(s|s")n"(s"), (37)

then it may be shown that the Markov chain converges to the distribution 7(-). More precisely, the elements of
the chain {sji = b+ 1,...,n} are unbiased samples from the distribution 7*(-) to within some given precision,
where b > 0 is known as the burn-in and represents the number of steps required for the chain to converge to
within that precision.

The Metropolis—Hastings algorithm solves the problem of determining what transition density to use so as
to generate a given invariant distribution. It is concerned with generating samples from some target density
7(-), known apart from a constant factor, and does so by determining a suitable transition density for a Mar-
kov chain to converge to this distribution. To do this we require a candidate generating density, ¢(s,s’), where
J q(s,s’) ds’ = 1, which selects the next point in the Markov chain. The acceptance probability of this step is

()
o(s,s’) = min (n(s)q(s,s’) ,1). (38)

The Metropolis—Hastings algorithm can be summarised as follows:

(1) repeat for i=1,2,...,n

(2) generate s’ from ¢(s;,') and a uniform random variable u between 0 and 1.
(3) if u < a(s;,s’) then set 5,41 = §;

(4) else set s;11 =55

(5) return {sfi=1,2,...,n}

The Metropolis—Hastings algorithm generates a Markov chain in the state space with a transition density
Poi(8'ls) = q(s,8")a(s,s’). When a proposed move is rejected the chain remains where it is. This choice of tran-

! E.g. the partition function % = Zsese*E(“)/ %7 where E(s) is the energy of the system in state s, need not be know in order to sample
the Boltzmann distribution, where the probability that the system is in state s is given by P(s) = e F¢)/ks7 /
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sition density ensures that the condition of detailed balance is satisfied and hence the Markov chain converges
to the required target density. The algorithm generates a Markov chain that finds regions in state space where
the probability distribution is peaked and samples these region with the correct frequency.

The efficiency of the algorithm is dependent on the choice of candidate generating function. Indeed the opti-
mal choice of ¢(s,s’) for a particular target density remains an active area of research today. An important
special case occurs if the candidate generating distribution is symmetric, ¢(s,s’) = ¢(s’,s), and so

a(s,s') = min (% 1). (39)

This was Metropolis’s original formulation which was generalised to the case of an asymmetric candidate gen-
erating function in 1970 by Hastings [21].

4.2. Estimating sampling error

In general we wish to determine the weighted average over all possible states of some observable of the
system

(0). :/dsn(s)O(s).

Because the Metropolis algorithm produces a set samples of the distribution =(*), {s]i=5b+1...b + n}, such
averages can be estimated as

Z?izirlo(si)
n

(0), ~ (40)
The statistical uncertainty in such a quantity can be difficult to estimate because the samples are generally cor-
related with one another, as the samples produced by the Metropolis algorithm are not independent. One way
to obtain less correlated samples is to only take every gth point in the chain after the burn-in for the purpose of
calculating averages, where g is known is the gap. However, this does not usually produce more accurate esti-
mates of averages than could have been obtained by simply taking every sample after the burn-in.

Alternatively, one can accept the fact that the samples are correlated, but attempt to account for the cor-
relations in some quantitative way. A scheme for estimating errors in means calculated from correlated Monte
Carlo data may be found in [34].

For large dimensional state spaces one may still not be satisfied with estimating errors from a single Mar-
kov chain, even if the correlations are accounted for. An example is the sampling of probability density with
multiple peaks, which may not individually give correct averages for state-space dependent quantities. A
related issue is that the Markov chain generated by the algorithm may not be ergodic over the noise space.
To reduce the severity of these possibilities the simplest procedure is to run multiple Markov chains of the
same type but with statistically uncorrelated starting points, and treat the averages obtained from each chain
as samples of the mean of the quantity of interest. The overall mean is calculated by

)

where (O);, i = 1...N are the means from the independent Markov chains as in Eq. (40), and the subscript 7
has been omitted for clarity. By the central limit theorem one would expect samples obtained in this way to
approach a Gaussian distribution about the true mean. Therefore an estimate of the error in the mean, for N
independent Markov chains is

AT — \/z,l )~ O/ W)

where A[-] denotes the error in the mean of the quantity of interest. This notation for error in the mean is used
throughout this paper when referring to means obtained from Metropolis data.
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4.3. Metropolis—Hastings algorithm for the stochastic gauge formalism

The appearance of the weight Q as a multiplicative factor in the stochastic averages in Eq. (9) suggests an
interpretation as a probability distribution. In this section, we show that it is possible to interpret the weight as
a probability distribution over the space of all noise, and hence apply the Metropolis—Hastings algorithm.

For the purposes of computer simulation, time is necessarily discretised. To simulate the time evolution of a
system for a period T we divide the time domain into N + 1 points so that each step forward in time is of
length At = T/N. For an M mode system with the standard set of drift gauges (i.e. without the extra gauges
and noises discussed in Section 3.1) we require 2M Gaussian distributed random numbers for each step for-
ward in time, and thus 2M N random numbers to evolve an entire trajectory. Hence our fundamental object is
a 2MN-component vector of Gaussian distributed random numbers w € R*" | called the noise vector. The dif-
ferent realisations of w give rise to different stochastic trajectories. The values of all stochastic phase space
variables after N time steps are thus functions of w

o=7dw, Q=QWwl.
The stochastic average of some quantity, {O)goch, 1S

(0) stoen = / AP ()0 () = lim 2= 007
n

n—0o0

where the #; are drawn from a multi-dimensional Gaussian normal distribution.’

Pw) = W exp (— %2), (43)

and O = O[w] is some quantity depending on the noise.
Hence the stochastic sampling of moments in stochastic gauge simulations, Eq. (9), is the sampling of a
multi-dimensional integral

() O (7)) o, = / TP (55) Q) Oy (7). (44)

where O, (%) = B[w]"o[i0]" + (B[W]"«[W]")".
The Metropolis—Hastings algorithm can be applied by identifying the state space S as
as the vector of noises w. The probability distribution we wish to sample is

(i) = P2, (4s)

where 4" = [ d*"#P(i)Q[i] is a normalisation constant. The Metropolis algorithm can be used to generate a
set of samples of n(w), {w;[i = 1...n} and estimate quantum averages as

(@) gy = Zpoeete — (Ooele o L OB, o

None of these steps require explicit knowledge of the normalisation constant ./, although in real-time unitary
calculations we know analytically that it should always be one. Typically, we run multiple Markov chains as
described in Section 4 to obtain means and standard-deviation error estimates, (O,,), = (Oun) £ A[{Opn)]-
For comparison, ordinary stochastic sampling uses a Gaussian normal random number generator to gen-
erate samples, {w;|i = 1...N}, of P(w) and calculates quantum averages as
N 2 i1 200) O [Wi] /1
<(aT) a )QM = ! 2 :
Finally, we note that the Metropolis-Hastings algorithm as outlined above only optimises the stochastic sam-
pling of moments at the final target time. At earlier times the probability distribution 7(w) (where W is the

R*"N and the state s

2 Other noise distributions are possible as the central limit theorem ensures Gaussian statistics in the limit of infinitesimal step size —
however we use Gaussian statistics here.
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noise vector w truncated at the point corresponding to the earlier time) is different in that
(W) /@(W) # n(w') /n(W), and so we should not expect the Metropolis algorithm targeted to the later time
to correctly sample the moments at earlier times. This is also illustrated in Fig. 1 where the relative weights
vary considerably as time progresses.

4.4. Designing a candidate generating function

The choice of candidate generating function ¢(w, ') is a subtle problem and perhaps the most crucial ele-
ment of applying the Metropolis—Hastings algorithm to the stochastic gauge formalism. The Metropolis algo-
rithm generates a Markov chain in noise space, where at each step the candidate generating function proposes
a new noise w for the stochastic trajectory which is then accepted or rejected based on the acceptance prob-
ability defined by Eq. (38)

a(i#, W) = min (1,W> = min (1,P(W)Q(W)q(w’w)>.

m(w)g (W, W) P(w)Q>w)q(w, W)

The evaluation of the weight at the target time for the proposed noise 2(w') is a non-local procedure; even if
only a single noise is altered in the time domain the entire trajectory from that time on has to be evolved until
the target time in order to evaluate the new weight.
To separate the issue of sampling high weight trajectories from the Gaussian nature of the noise it is advis-
able to choose a candidate generating function such that
q(w, W) _ P(w)

g(w,w) ~ P()’ (47)

For this class of generating functions, the probability of a move being accepted is

() ) Q6P 7) Q)
) = S @) Q) PMa(w ) @) )

which is only dependent on the weight rather than the Gaussian distribution, P(*).
4.5. Time and frequency domain noise functions

A simple generating function of this type is selecting a number of entries in the current noise vector and
generating new noises for these. This procedure can be carried out in either the time or the frequency
domain of the noise. If the noises are altered in the time domain the stochastic trajectory is clearly unal-
tered up until the point of the first change. If noises are altered in the frequency domain then every noise in
the time domain is affected to some extent. We consider altering noises in the frequency domain to be a
more natural “small-step” for the Metropolis algorithm as all time-domain noises are changed by a small
amount on average. All results presented in this paper use a generating function operating in the frequency
domain.

In more detail, consider the R independent noise vectors of length N, w; € RY, j=1...R, separately,
instead of a single noise vector of length RN. Insight into strategies for altering noises may be gained by taking
the discrete Fourier transform of each noise vector

N-1
Ky(n) = &N (k). (49)
k=0

Here a subscript is used to denote each of the R noise vectors, and should not be confused with the notation w;
used previously to denote the sequence of noise vectors in a Markov chain. Brackets () denote the components
of the noise/spectrum vectors. The n = 0 component of K is the mean of the noise, and the fact that the noise is
real places constraints on the components. Let .4"(u, ) denote a Gaussian distribution of mean u and stan-
dard deviation . The Fourier transform of a vector whose components are normally distributed real variables
(w(n) distributed as 47(0, 1)) is complex. For even N the real and imaginary parts of each component in the
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range 2 < n < N — 1 are distributed as .4"(0, /N /2) and subject to the constraint K (N — n) = K(n)", while the
n=1and n = N components are real and distributed as .4#"(0, v/N). For odd N, the real and imaginary parts of
each component in the range 2 <n < N are distributed as .47(0,/N/2) and subject to the constraint
K(N —n) = K(n)", while only the n = 1 component is real and distributed as .4"(0, v/N). These constraints pre-
serve the total number of independent components N.

It is informative to study an individual trajectory and alter noise elements individually in frequency
space to gauge the effect on the final weight. One might expect that the low frequency noise should be
more important than the high frequency noise, as high frequency noise should ‘‘average out” over a
shorter time scale and thus not affect the dynamics as much. We find that this is true and Fig. 4 quantifies
the potential of frequency components of the noise to affect the final value of the weight. To obtain this
graph four random noise vectors were generated and the corresponding stochastic trajectory evolved using
real gauge discussed in Section 3.1 with mean atom number, z = 100, and diffusion gauge A4 = 2. Using
this initial trajectory as a starting point, a particular component of the noise spectrum was examined
for its effect on the final weight by choosing 10* random values for that component and evolving the cor-
responding stochastic trajectory, with all other components of the noise spectrum the same. In Fig. 4 the
standard deviation of the final weights obtained in this manner is plotted on a log scale against the spec-
trum component number that was altered. It is clear from this figure that the low frequency noises have
greater potential to affect the final weight. This trend is independent of the initial trajectory, however we
note the actual values of the standard deviations obtained vary considerably depending on the initial
trajectory.

Another question to consider is how many sites in the frequency domain to alter in proposing a new noise
vector, and how to select these. As the low-frequency noise seems to affect the final value of the weight more
than the high-frequency noise, one might be tempted to consider strategies where low-frequency noise is
altered more often so as to more effectively explore the noise space. In practice, we found that such strategies
were no more effective than selecting sites randomly. Typically, we chose to alter of the order 1-10% of the
total components of the noise. A good guiding principle is that Metropolis sampling is thought to be most
efficient when approximately 50% of proposed moves are accepted during sampling [6,7]. We therefore exper-
imented with different percentages with this principle in mind.
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Fig. 4. Tllustration of the effect of varying frequency components of the noise vectors on the final value of the weight. An initial stochastic
trajectory from a real-gauge simulation of the anharmonic oscillator with mean atom number 7 = 100 was taken as a starting point. The
value of the weight at the end of the trajectory, T = 0.5/1/a = 0.05, was Q = 0.9936. The time step was At = 10~* so each noise vector
contained 500 components. In frequency space each noise vector contains 250 complex components. A new random noise was chosen for a
particular component of the noise vector, the entire trajectory re-evolved and the new final weight recorded. This procedure was repeated
10* times for each frequency component and the variance in the final weight, o(€), calculated. This variance is plotted versus frequency
component to give a measure of the potential of each frequency component to affect the final weight. Clearly low-frequency noise has more
effect than high-frequency noise.
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Fig. 5. Metropolis sampling of real-gauge simulation of anharmonic oscillator dynamics for an initial coherent state with mean atom
number 7 = 100 (4 = 2,4 = 1/2). (a) Mean atom number. Note the difference in the vertical scale compared with Fig. 2(a). (b) Mean
X-quadrature. Metropolis averages and error estimates (crosses with error bars) were calculated from the means of 10> Markov chains,
each taking 10* samples after a burn-in of 10* proposals. The total simulation time was T = 1 /+/i = 0.1 and the time step used was
At = T/10* = 10~*. Proposals were generated by uniformly selecting 10% of the components of the noise vectors in the frequency
domain and generating new random noise for those sites. The analytic results are shown as dashed lines.

4.6. Results

We now present the results of a Metropolis sampling of the real-time dynamics of the anharmonic oscillator
using the real gauge discussed in Section 3.1 and the candidate generating functions discussed in Section 4.4.
To allow for the distribution n(w) = P(w)Q(w)/.4" to be multiply-peaked we use the more robust technique of
estimating means and errors using multiple Markov chains as discussed in Section 4. The starting points of the
Markov chains were generated as statistically uncorrelated Gaussian noise so as to ensure that no bias is intro-
duced in the use of multiple Markov chains for the estimation of errors, as discussed in Section 4.2.

Fig. 5 shows the Metropolis sampling of (i1) = (a'a) and (X) = ((a + a')/2) for a real-gauge simulation of
the anharmonic oscillator with 7 = 100. We targeted the Metropolis sampling to 20 time points in intervals of
At =0.005 from 0 to the final time of t = 7 = 1/v/i = 0.1. The average at each time point is completely inde-
pendent of the other time points. Altogether n = 10° samples were used for the average at each point so statis-
tically the sampling is comparable to the stochastic sampling in Fig. 2. However, because the Metropolis
sampling has to be run independently for each time point and each Markov chain has to burn in before sam-
pling begins, there is clearly a much greater computational effort required to obtain the Metropolis results. Nev-
ertheless the Metropolis results are far more reliable than the stochastic results — the reliable simulation time
appears to be at least T = 0.05, which is approximately a factor of 5 improvement over the stochastic sampling.’

We note that even with the Metropolis algorithm the sampled mean atom number appears to decay slightly
at longer times. Although the results are still accurate to within 1% the estimated error bars do not account for
the difference from the analytic result. We believe that this behaviour is due to the inherent difficulty in sam-
pling the skewed weight distribution, even with Monte Carlo algorithms. In particular, as noted in Section 3.2,
the sampled mean and median of the weights were different by many orders of magnitude at the end time of
the stochastic simulation, and the calculated mean was very sensitive to discarding the tails. It seems that the
Metropolis sampling was not able to completely overcome these difficulties at the end time. The results are
nonetheless vastly improved compared with stochastic sampling. We also note that at the intermediate time
(r = 0.025) where the above measures were not so drastic but the stochastic sampling was still poor, the
Metropolis sampling has actually produced quite accurate results.

We experimented with different distributions of the 10° allowed samples between different numbers of Mar-
kov chains. There is a trade-off between number of Markov chains and the length of the chain — if longer

3 The numerical value of this factor will depend on the mean atom number in the simulation, as well as the values of the various
parameters in the Metropolis simulation.
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chains are run (e.g. 10% chains each with 10* samples), then the means obtained from each chain are more
accurate, and closer to Gaussian about the true mean. However, there are less chains to average over com-
pared with a run of a larger number of shorter chains (e.g. 10° chains each with 10* samples). It was a matter
of empirical observation to determine the best balance.

We also experimented with the fraction of noises to be altered in the frequency domain when proposing a
new noise vector. As a rough guide we aimed to have 50% of proposed moves accepted during sampling. How-
ever at short times we found that even if a very large fraction of the noises were altered (e.g. 50% or more) a
large fraction of proposed changes were accepted (~90%). This large acceptance rate is due to the distribution
of weights being relatively narrow at short times. At longer times the distribution has spread out sufficiently
such that lower acceptance rates are possible.

Clearly there are many parameters to be optimised in Metropolis sampling of stochastic gauge equations
and we have only scratched the surface. We have aimed to present conceptually-simple approaches to illustrate
the principle rather than exhaustively optimise all parameters. The fact that significant improvements were
seen over stochastic sampling — even with our very simple Metropolis schemes — gives us confidence that fur-
ther improvements are possible.

5. Branching algorithm

The second Monte Carlo technique that we investigate for real-time stochastic-gauge simulations is a
branching algorithm similar to that used in Green’s function Monte Carlo, see e.g. [35]. Corney and Drum-
mond [17] have previously used this algorithm for stochastic simulations in imaginary time using a Gaussian
basis (a generalisation of the stochastic-gauge basis).

The branching algorithm is simpler to describe and more straightforward to apply to stochastic gauge sim-
ulations. The branching algorithm works by concurrently evolving a “population” of stochastic trajectories in
time, and periodically cloning those that acquire a large weight and killing those that acquire a small weight.

5.1. Algorithm

We define 7 to be the total simulation time, Aty be the time interval between branching events and At the
fundamental time-step for integrating the SDEs. In practice, it is desirable for the number of branching events
B = T/Axy, and the number of time steps in a branching period Aty,/At to be integers. Formally the branching
algorithm can be stated as

(1) Begin with an initial population of N, stochastic trajectories.
(2) Evolve all stochastic trajectories forward in time for a period Arty,.
(3) fori=1,2,...,Npop

e Generate a uniform random variable u between 0 and 1.

e Make m; = |Q;/Q + u]| clones of trajectory i.

e Set Q;=1.
(4) Set Npop = SN0 m,.

Here we set Q = (Q) to ensure that the number of trajectories in the population N, remains constant
on average. Because Q does not couple into the SDEs for the mode variables, further evolution is not
affected by the resetting of the weights at each branching time. The statistical equivalence between the
weight and the multiplicity of paths means that the physical moments are unchanged on average by the
branching procedure. To see this note that the average of the mean of an observable O after the branching
event 1S

NPUP

Z Q.0;, (50)

which is identical to the mean before the branching event.
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Fig. 6. Branching-algorithm sampling of real-gauge simulation of anharmonic oscillator dynamics for an initial coherent state with mean
atom number 7 = 100 (4 = 2, 1 = 1/2). (a) Mean atom number. Again note the difference in the vertical scale compared with Fig. 2(a). (b)
Mean X-quadrature. Branching averages and error estimates, indicated by the shaded region, were calculated from the means of 10°
populations, each containing 10* trajectories on average. The total simulation time was 7 = 1/4/7 = 0.1 and the time step used was At =
7/ 10° = 107, The branching time was At, = 107>, The analytic results are shown as dashed lines.

5.2. Results

We now present the results of a branching-algorithm sampling of real-time dynamics of the anharmonic
oscillator using the real gauge discussed in Section 3.1. Similarly to the Metropolis sampling, we calculate
averages and error estimates from multiple independent populations.

Fig. 6 shows a branching-algorithm sampling of (i) = (a'a) and (X) = ((a + a')/2) for a real-gauge simu-
lation of the anharmonic oscillator with 7 = 100. Again we see a large improvement in the sampling compared
with stochastic sampling, Fig. 2. A clear advantage of the branching algorithm over Metropolis is that it gen-
erates physical moments at every time step as opposed to being targeted to a single time.

At each time there are, on average, 10° stochastic trajectories contributing to the stochastic averages. As
with the Metropolis, it was again a matter of experimenting with different ratios of the number of trajectories
to the number of populations to determine the best balance. We present results for the same division of tra-
jectories amongst populations (10% populations of 10* trajectories) as samples amongst Markov chains for the
Metropolis algorithm so that the results are as comparable as possible.

The only free parameter in the algorithm itself is the time between branching events, Aty,. There is a trade-
off between making this interval large enough that the weights spread out sufficiently for the branching to be
meaningful and small enough to improve the sampling continuously in time. The branching interval used for
this simulation, Aty = 1073, is small on the scale of the dynamics of the system but large enough to allow the
weights to diverge significantly between branching events.

6. Discussion and outlook

In this paper, we have demonstrated the use of two Monte Carlo techniques, the Metropolis algorithm and
a branching algorithm, for real-time calculations of quantum dynamics with the stochastic-gauge method.
This work should be considered as a proof of principle rather than a fully optimised ‘recipe’. It is part of a
larger program of optimising bases, gauges and algorithms for stochastic simulations of quantum dynamics
in real and imaginary time. The general goal of this program is to increase the useful simulation time for sto-
chastic methods. Results in this direction are necessarily limited to demonstrating improvements with partic-
ular techniques for particular systems [19,24,25] as there are no known analytic methods for determining the
time scale at which sampling errors lead to deviations from the exact solution.

In this work we have restricted ourselves to real gauges so that the weights remain real and can be inter-
preted as probabilities, and have considered the single-mode anharmonic oscillator as an example of our meth-
ods. In order to control the divergence of stochastic trajectories using real gauges we have explored a
previously untested gauge freedom resulting from the choice of a non-square noise matrix. The resulting dis-
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tribution of weights becomes highly skewed on a time scale proportional to the inverse of the mean atom num-
ber. The weight parameter for most stochastic trajectories tends towards zero, whereas very few tend towards
a large weight. Such distributions are likely to be ubiquitous for unitary real-time stochastic-gauge simulations
with real gauges, as the weight distribution necessary broadens with time while the mean weight must remain
unity.

While such skewed distributions are difficult to sample with the usual stochastic methods, they are suited to
Monte Carlo importance sampling techniques that preferentially sample high-weight trajectories. Indeed we
found encouraging improvements over stochastic sampling using both the Metropolis and branching algo-
rithms. From comparing the results of stochastic sampling plotted in Fig. 2 to those using Monte Carlo tech-
niques in Figs. 5 and 6 we can see that we have extended the useful simulation time by about a factor of three.
These improvements are strongly indicative that the errors found with these techniques are statistical in origin,
rather than due to systematic effects like boundary terms, which would not improve simply due to improved
sampling methods.

The branching algorithm is the more straightforward to apply because it has only one free parameter (the
branching interval) and produces results at every time step. We suggest it as the best starting point for future
Monte Carlo simulations. By contrast the Metropolis algorithm has to be targeted to a particular time and so
seems less useful. However, there is a lot more freedom in the Metropolis algorithm and a vast literature exists
on optimising sampling for particular distribution (see e.g. [22] and references therein). Thus it seems quite
possible that it will be better suited to some problems, especially when further improvements over the branch-
ing algorithm are desirable.

A timely application of these methods is in theoretical calculations for ultra-cold atomic gases [17,36].
QMC methods have been used to calculate some static properties of ultra-cold gases, e.g. see [37,38]. These
systems are quantum-many body by nature and hence few exact theoretical results exist. They are a useful test-
ing ground for theory due to their purity and well-understood controllable interactions.

Traditionally, Monte Carlo techniques have been highly successful in imaginary-time calculations for ther-
mal equilibrium. This paper has extended the use of these techniques to real-time quantum-dynamical calcu-
lations and thus opens a new domain of application for these algorithms. In future, these techniques need to be
extended to many-mode, many-particle problems where exact solutions are not known.
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